224
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Liu, D., Chen, X., Liu, J., Ye, J., & Guo, Z., (2012). The rice ERF transcription factor
OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J.
Exp. Bot., 63, 3899–3911.
Liu, H., Yang, Y., Liu, D., Wang, X., & Zhang, L., (2020). Transcription factor TabHLH49
positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance
in wheat. BMC Plant Biology, 20, 259.
Liu, L., Zhang, Z., Dong, J., & Wang, T., (2016). Overexpression of MtWRKY76 increases
both salt and drought tolerance in Medicago truncatula. Environ. Exp. Bot., 123, 50–58.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki,
K., (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA
binding domain separate two cellular signal transduction pathways in drought and low
temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10,
1391–1406.
Liu, R., Liu, M., Liu, J., Chen, Y., Chen, Y., & Lu, C., (2010). Heterologus expression of a
Ammopiptanthus mongolicus late embryogenesis abundant protein gene (AmLEA) enhances
Escherichia coli viability under cold and heat stress. Plant Growth Regul., 60, 163–168.
Liu, X., Song, Y., Xing, F., Wang, N., Wen, F., & Zhu, C., (2015). GhWRKY25, a group I
WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in
transgenic Nicotiana benthamiana. Protoplasma, 253, 1265–1281.
Liu, Y., Ji, X., Nie, X., Qu, M., Zheng, L., Tan, Z., Zhao, H., et al., (2015). Arabidopsis
AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by
binding to their E-box and GCG-box motifs. New Phytol., 207, 692–709.
Liu, Y., Yu, X., Liu, S., Peng, H., Mijiti, A., Wang, Z., Zhang, H., & Ma, H., (2017). A chickpea
NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in
Arabidopsis. Plant Mol. Biol. Rep., 35, 83–96.
Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., &
Hammer, G. L., (2014). Greater sensitivity to drought accompanies maize yield increase in
the U.S. Midwest. Science, 344, 516–519.
Lowder, L. G., Paul, J. W., Baltes, N. J., Voytas, D. F., Zhang, Y., Zhang, D., Tang, X., et al.,
(2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional
regulation. Plant Physiol., 169, 971–985.
Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T. F., Voytas, D. F., et al.,
(2017). Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and
mTALE- act systems. Mol. Plant, 11, 245-256.
Lu, G., Gao, C., Zheng, X., & Han, B., (2009). Identification of OsbZIP72 as a positive
regulator of ABA response and drought tolerance in rice. Planta, 229, 605-615.
Luo, M., Liu, X., Singh, P., Cui, Y., Zimmerliu, L., & Wu, K., (2012). Chromatin modifications
and remodeling in plant abiotic stress responses. Biochim. Biophys. Acta, 1819, 129–136.
Luo, X., Li, C., He, X., Zhang, X., & Zhu, L. F., (2019). ABA signaling is negatively regulated
by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep.,
39, 181–194.
Ma, J., Gao, X., Liu, Q., Shao, Y., Zhang, D., Jiang, L., & Li, C., (2017). Overexpression of
TaWRKY146 increases drought tolerance through inducing stomatal closure in Arabidopsis
thaliana. Front. Plant Sci., 8, 2036.
Ma, J., Wang, L. Y., Dai, J. X., Wang, Y., & Lin, D., (2021). The NAC-type transcription factor
CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. BMC
Plant Biol., 21, 11.